Abstract

Emotion detection plays a vital role in understanding user sentiment specially in this the era of digital communication. Due to exponential growth of internet and social media, social media became a huge source of information which gives insight in varieties of applications. Emotion detection is an emerging field of research. Users express their implicit feelings, thoughts on social media. Analyzing such data becomes challenging due to linguistic diversity, especially in code-mixed or code-switched content involving transliterated Hindi and English. This paper addresses the problem of emotion detection from such complex textual data. We have explored and compared performances of different deep learning models in handling code-mixed social media text. Our experiments demonstrate that among all tested architectures, the hybrid LSTM-CNN model shown the highest mean test accuracy of 79.60% and 0.4216 F1-score without data balancing. For balanced data CNN gives the highest accuracy of 77.79%, while the Bi-LSTM model gives the highest F1-score of 0.4978. This research demonstrates the effectiveness of deep learning for emotion detection in transliterated Hindi-English social media posts.

Keywords

Emotion Detection, Code Mixed Text, Code Switched Text, Social Media Text, Deep Learning,

Downloads

Download data is not yet available.

References

  1. S. Kusal, S. Patil, K. Kotecha, R. Aluvalu, V. Varadarajan, AI Based Emotion Detection for Textual Big Data: Techniques and Contribution. Big Data and Cognitive Computing, 5(3), (2021) 43. https://doi.org/10.3390/bdcc5030043
  2. A. Al Maruf, F. Khanam, M.M. Haque, Z.M. Jiyad, M.F. Mridha, Z. Aung, Challenges and Opportunities of Text-Based Emotion Detection: A Survey. IEEE Access, IEEE, 12, (2024)18416–18450. https://doi.org/10.1109/ACCESS.2024.3356357
  3. F.A. Acheampong, C. Wenyu, H. Nunoo-Mensah, Text-based emotion detection: Advances, challenges, and opportunities. Engineering Reports, 2(7), (2020) e12189. https://doi.org/10.1002/eng2.12189
  4. P. Nandwani, R. Verma, A review on sentiment analysis and emotion detection from text. Social Network Analysis Mining, 11(1), (2021) 81. https://doi.org/10.1007/s13278-021-00776-6
  5. P. Ekman, Basic Emotions. Handbook of Cognition and Emotion, (1999) 45–60. https://doi.org/10.1002/0470013494.ch3
  6. R. Jan, A.A. Khan, Emotion Mining Using Semantic Similarity. International Journal of Synthetic Emotions, 9(2), (2018) 1–22.
  7. S.A. Kumar, A. Geetha, Emotion Detection from Text using Natural Language Processing and Neural Networks. International Journal of Intelligent Systems and Applications in Engineering, 12(14), (2024) 609–615. https://ijisae.org/index.php/IJISAE/article/view/4707
  8. J. Guo, Deep learning approach to text analysis for human emotion detection from big data. Journal of Intelligent Systems, 31(1), (2022)113–126. https://doi.org/10.1515/jisys-2022-0001
  9. D. Yohanes, J.S. Putra, K. Filbert, K.M. Suryaningrum, H.A. Saputri, Emotion Detection in Textual Data using Deep Learning. Procedia Computer Science, 227, (2023) 464–473, 2023 https://doi.org/10.1016/j.procs.2023.10.547
  10. S. Mubeen, N. Kulkarni, M.R. Tanpoco, R.D. Kumar, L.M. Naidu, T. Dhope, Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques. International Journal of Communication Networks and Information Security (IJCNIS), 14(3), (2022) 176–186. https://doi.org/10.17762/ijcnis.v14i3.5604
  11. V. Ravindran, A. Jetti, R. Sivanaiah, A. Deborah, M. Thankanadar, R.S. Milton, (2024) TECHSSN at SemEval-2024 Task 10: LSTM-based Approach for Emotion Detection in Multilingual Code-Mixed Conversations. Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), pp. 763–769. https://doi.org/10.18653/v1/2024.semeval-1.109
  12. K. Yadav, A. Lamba, D. Gupta, A. Gupta, P. Karmakar, S. Saini, (2020) Bi-LSTM and Ensemble based Bilingual Sentiment Analysis for a Code-mixed Hindi-English Social Media Text. 2020 IEEE 17th India Council International Conference (INDICON), IEEE, New Delhi, India. https://doi.org/10.1109/INDICON49873.2020.9342241
  13. T.T. Sasidhar, B. Premjith, K.P. Soman, Emotion Detection in Hinglish (Hindi+English) Code-Mixed Social Media Text. Procedia Computer Science, 171, (2020) 1346–1352. https://doi.org/10.1016/j.procs.2020.04.144
  14. S. Ghosh, A. Priyankar, A. Ekbal, P. Bhattacharyya, Multitasking of sentiment detection and emotion recognition in code-mixed Hinglish data. Knowledge Based System, 260, (2023)110182. https://doi.org/10.1016/j.knosys.2022.110182
  15. U. Barman, A. Das, J. Wagner, J. Foster, Code Mixing: A Challenge for Language Identification in the Language of Social Media. 1st Workshop on Computational Approaches to Code Switching, Switching 2014 at the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP (2014) 13–23. https://doi.org/10.3115/v1/W14-3902
  16. K.K. Sampath, M. Supriya, Transformer Based Sentiment Analysis on Code Mixed Data. Procedia Computer Science, 233, (2024) 682–691. https://doi.org/10.1016/j.procs.2024.03.257
  17. P. Udawatta, I. Udayangana, C. Gamage, R. Shekhar, S. Ranathunga, Use of prompt-based learning for code-mixed and code-switched text classification, World Wide Web, 27(5) ,(2024) 63. https://doi.org/10.1007/s11280-024-01302-2
  18. G.V. Singh, S. Ghosh, M. Firdaus, A. Ekbal, P. Bhattacharyya, Predicting multi-label emojis, emotions, and sentiments in code-mixed texts using an emojifying sentiments framework. Scientific Reports, 14(1), (2024) 12204. https://doi.org/10.1038/s41598-024-58944-5
  19. A. Thiab, L. Alawneh, M.AL-Smadi, Contextual emotion detection using ensemble deep learning. Computer Speech Language, 86, (2024) 101604. https://doi.org/10.1016/j.csl.2023.101604
  20. R. Agarwal, N. Abbas, (2024) Emotion Detection in Hindi Language Using GPT and BERT. In International Conference on Innovative Techniques and Applications of Artificial Intelligence, 105–118. https://doi.org/10.1007/978-3-031-77918-3_8
  21. N. Raihan, D. Goswami, A. Mahmud, A. Anastasopoulos, M. Zampieri, (2024). EmoMix-3L: A Code-Mixed Dataset for Bangla-English-Hindi Emotion Detection. arXiv. https://doi.org/10.48550/arXiv.2405.06922
  22. H. Takahashi, (2024) Hidetsune at SemEval-2024 Task 10: An English Based Approach to Emotion Recognition in Hindi-English code-mixed Conversations Using Machine Learning and Machine Translation. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024) 374-378. https://doi.org/10.18653/v1/2024.semeval-1.58
  23. V.O. Yenumulapalli, P. Premnath, P. Mohankumar, R. Sivanaiah, A. Deborah, (2024) TECHSSN1 at SemEval-2024 Task 10: Emotion Classification in Hindi-English Code-Mixed Dialogue using Transformer-based Models. In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), 833-838. https://doi.org/10.18653/v1/2024.semeval-1.119
  24. L. S. Meetei, S. M. Singh, A. Singh, R. Das, T. D. Singh, S. Bandyopadhyay, Hindi to English multimodal machine translation on news dataset in low resource setting. Procedia Computer Science, 218, (2023) 2102-2109. https://doi.org/10.1016/j.procs.2023.01.186
  25. M. Imam, A. Patnaik, S. Jena, M. Digdarshini, S. K. Sharma, D. Muduli, Integrated Approach for Sentiment Detection and Emotion Recognition in Code-Mixed Hinglish Data. International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), IEEE, India. https://doi.org/10.1109/SCOPES64467.2024.10990930
  26. S. Mishra, S. Suryavardan, M. Chakraborty, P. Patwa, A. Rani, A. Chadha, A. Reganti, A. Das, A. Sheth, M. Chinnakotla, A. Ekbal, S. Kumar, (2023) Overview of memotion 3: Sentiment and emotion analysis of codemixed hinglish memes. arXiv. https://doi.org/10.48550/arXiv.2309.06517
  27. J. Herzig, M. Shmueli-Scheuer, D. Konopnicki, (2017) Emotion detection from text via ensemble classification using word embeddings. ICTIR 2017 - Proceedings of the 2017 ACM SIGIR International Conference on the Theory of Information Retrieval, 269–272. https://doi.org/10.1145/3121050.3121093
  28. M. Polignano, M. De Gemmis, P. Basile, G. Semeraro, (2019) A Comparison of Word-Embeddings in Emotion Detection from Text using BiLSTM, CNN and Self-Attention.In Adjunct publication of the 27th conference on User Modeling, Adaptation, and Personalization, 63–68. https://doi.org/10.1145/3314183.3324983
  29. K. Shrivastava, S. Kumar, D.K. Jain, An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimedia Tools Applications, 78, (2019) 29607–29639. https://doi.org/10.1007/s11042-019-07813-9
  30. A. Perera, A. Caldera, Sentiment Analysis of Code-Mixed Text: A Comprehensive Review.Journal of Universal Computer Science, 30(2), (2024) 242–261. https://doi.org/10.3897/jucs.98708
  31. P. Patwa, G. Aguilar, S. Kar, S. Pandey, S. Pykl, B. Gambäck, T. Chakraborty, T. Solorio, A. Das, (2020) SemEval-2020 Task 9: Overview of Sentiment Analysis of Code-Mixed Tweets. 14th International Workshops on Semantic Evaluation, SemEval 2020 - co-located 28th International Conference on Computational Linguistics, 774–790. https://doi.org/10.18653/v1/2020.semeval-1.100
  32. D. Vijay, A. Bohra, V. Singh, S.S. Akhtar, M. Shrivastava, (2018) Corpus creation and emotion prediction for hindi-english code-mixed social media text. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Student Research Workshop, 128–135. https://doi.org/10.18653/v1/N18-4018
  33. A. Wadhawan, A. Aggarwal, (2021) Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach, arXiv.
  34. B.G. Patra, D. Das, A. Das, (2018) Sentiment Analysis of Code-Mixed Indian Languages: An Overview of SAIL_Code-Mixed Shared Task @ICON-2017. ArXiv.
  35. P. Mishra, P. Danda, P. Dhakras, (2018) Code-Mixed Sentiment Analysis Using Machine Learning and Neural Network Approaches. arXiv.
  36. S. Das,T. Singh,(2023) Sentiment Recognition of Hinglish Code Mixed Data using Deep Learning Models based Approach. Proceedings of the 13th International Conference on Cloud Computing, Data Science and Engineering (Confluence), IEEE, Noida, India. 265–269. https://doi.org/10.1109/Confluence56041.2023.10048879
  37. A. Patil, V. Patwardhan, A. Phaltankar, G. Takawane, and R. Joshi, (2023) Comparative Study of Pre-Trained BERT Models for Code-Mixed Hindi-English Data. IEEE 8th International Conference for Convergence in Technology (I2CT), IEEE, Lonavla, India. https://doi.org/10.1109/I2CT57861.2023.10126273
  38. X. Zhu, Y. Lou, H. Deng, D. Ji, Leveraging bilingual-view parallel translation for code-switched emotion detection with adversarial dual-channel encoder. Knowledge Based Systems, 235, (2022) 107436. https://doi.org/10.1016/j.knosys.2021.107436
  39. H. Rathnayake, J. Sumanapala, R. Rukshani, S. Ranathunga, AdapterFusion-based multi-task learning for code-mixed and code-switched text classification. Engineering Applications of Artificial Intelligence, 127, (2024) 107239. https://doi.org/10.1016/j.engappai.2023.107239
  40. A.R. Abas, I. Elhenawy, M. Zidan, M. Othman, BERT-CNN: A Deep Learning Model for Detecting Emotions from Text. Computers, Materials and Continua, 71(2), (2021) 2943–2961. https://doi.org/10.32604/cmc.2022.021671
  41. F.M.P. Del Arco, A. Curry, A.C. Curry, D. Hovy, (2024) Emotion Analysis in NLP: Trends, Gaps and Roadmap for Future Directions. International Conference on Language Resources and Evaluation, arXiv. https://doi.org/10.48550/arXiv.2403.01222
  42. A.N.B. Emran, A. Ganguly, S.S.C. Puspo, N. Raihan, D. Goswami, (2024) MasonTigers at SemEval-2024 Task 10: Emotion Discovery and Flip Reasoning in Conversation with Ensemble of Transformers and Prompting. arXiv. https://doi.org/10.48550/arXiv.2407.00581
  43. S. Kumar, M.S. Akhtar, E. Cambria, T. Chakraborty, (2024) SemEval 2024 -- Task 10: Emotion Discovery and Reasoning its Flip in Conversation (EDiReF), arXiv. https://doi.org/10.48550/arXiv.2402.18944