Abstract
This research article numerically investigated the performance of non-oxide hybrid Boron Nitride Silicon Carbide (BN+SiC/water) hybrid nanofluid in high heat flux miniaturized electronic hardware. 3d-CFD model validated with established experimental data on a triangular section, oblique microchannel geometry is used to explore the influence of total particle loading (0.5 to 1.5 %), relative particle proportion, on the Nusselt number (Nu), friction factor (f) and thermal performance factor (TPF). The results compared with the benchmark conventional oxide hybrid nanofluid system (Al₂O₃+CuO/water) and found superior on overall thermo-hydraulic performance. Heat transfer enhancement by 50% with respect to base fluid water, is quite an improvement in thermal enhancement, if we compare with the benchmark oxide system reference of around 37%. It is also observed that relative SiC proportion increases the performance of this system. Nanoparticle size and morphology effects on the thermo-hydraulic performance is also studied in this work. Smaller size particles are found beneficial in a quantitative analysis in the range of 10nm to 90nm average particle diameter. Non spherical high aspect ratio shapes nanoparticles enhance the performance of the nanofluid observed in this study. This study not only introduced a novel advanced heat transfer fluid but also allow the design customization insight for this BN+SiC/water hybrid nanofluid system.
Keywords
Hybrid Nanofluid, BN SiC, Microchannel, Heat Transfer Enhancement, Particle Shape Effect, Particle Size Effect, Numerical Simulation, Thermo-hydraulic Performance, Nanoparticle Morphology,Downloads
References
- K.P. Bloschock, A. Bar-Cohen, Advanced thermal management technologies for defense electronics. In Defense Transformation and Net-Centric Systems, SPIE, 8405, (2012) 157-168. https://doi.org/10.1117/12.924349
- K.W. Jung, C. Zhang, T. Liu, M. Asheghi, K. E. Goodson, Thermal Management Research – from Power Electronics to Portables. in 2018 IEEE Symposium on VLSI Technology, IEEE, USA. https://doi.org/10.1109/VLSIT.2018.8510678
- A. R. Dhumal, A.P. Kulkarni, N.H. Ambhore, A comprehensive review on thermal management of electronic devices. Journal of Engineering and Applied Science, 70(1), (2023) 140. https://doi.org/10.1186/s44147-023-00309-2
- S. Jones-Jackson, R. Rodriguez, Y. Yang, L. Lopera, A. Emadi, Overview of Current Thermal Management of Automotive Power Electronics for Traction Purposes and Future Directions. IEEE Transactions on Transportation Electrification, 8(2), (2022) 2412–2428. https://doi.org/10.1109/TTE.2022.3147976
- N. Czaplicka, A. Grzegórska, J. Wajs, J. Sobczak, A. Rogala, Promising Nanoparticle-Based Heat Transfer Fluids—Environmental and Techno-Economic Analysis Compared to Conventional Fluids. International Journal of Molecular Sciences, 22(17), (2021) 9201. https://doi.org/10.3390/ijms22179201
- P. Bhandari, K.S. Rawat, Y.K. Prajapati, D. Padalia, L. Ranakoti, T. Singh, Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: A review. Journal of Energy Storage, 66, (2023) 107548. https://doi.org/10.1016/j.est.2023.107548
- S. Kandlikar, (2006). Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier.
- A. Jebelli, N. Lotfi, M.S. Zare, M.C.E. Yagoub, Advanced Thermal Management for High-Power ICs: Optimizing Heatsink and Airflow Design. Applied Sciences, 14(20), (2024) 9406. https://doi.org/10.3390/app14209406
- S.K. Das, S.U. Choi, W. Yu, T. Pradeep, (2007) Nanofluids: Science and Technology. John Wiley & Sons.
- S.U. Choi, J.A. Eastman, (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL United States.
- N. Abdullah, W.M.D.Z.W. Yunus, I.S. Mohamad, Thermal Conductivity Comparisons of Original And Oxidized Multiwalled Carbon Nanotubes-Waterbased Fluids. Jurnal Teknologi, 76(9), (2015). https://doi.org/10.11113/jt.v76.5645
- F. Mebarek-Oudina, I. Chabani, Review on Nano-Fluids Applications and Heat Transfer Enhancement Techniques in Different Enclosures. Journal of Nanofluids, 11(2), (2022) 155–168. https://doi.org/10.1166/jon.2022.1834
- S. Zeinali Heris, M. Nasr Esfahany, S. Gh. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28(2), (2007) 203–210. https://doi.org/10.1016/j.ijheatfluidflow.2006.05.001
- J. Wang, X. Yang, J.J. Klemeš, K. Tian, T. Ma, B. Sunden, A review on nanofluid stability: preparation and application. Renewable and Sustainable Energy Reviews, 188, (2023) 113854. https://doi.org/10.1016/j.rser.2023.113854
- S.N.M. Zainon, W.H. Azmi, Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids. Micromachines, 12(2), (2021) 176. https://doi.org/10.3390/mi12020176
- A. Bin Mahfouz, A. Ali, M. Mubashir, A.S. Hanbazazah, M. Alsaady, P.L. Show, Optimization of viscosity of titania nanotubes ethylene glycol/water-based nanofluids using response surface methodology. Fuel, 347, (2023) 128334. https://doi.org/10.1016/j.fuel.2023.128334
- S.A. Nada, R.M. El-Zoheiry, M. Elsharnoby, O.S. Osman, Enhancing the thermal performance of different flow configuration minichannel heat sink using Al2O3 and CuO-water nanofluids for electronic cooling: An experimental assessment. International Journal of Thermal Sciences, 181, (2022) 107767. https://doi.org/10.1016/j.ijthermalsci.2022.107767
- A.K. Jouybari, S. Dinarvand, P. Tehrani, M.E. Yazdi, G. Salehi, Turbulent Flow and Heat Transfer of Al2O3 –CuO Hybrid Nanofluids in Helically Micro-Finned Tubes Using Mass-Based and Discrete-Phase Models. Journal of Nanofluids, 13(5), (2024) 1134–1144. https://doi.org/10.1166/jon.2024.2199
- S. Zeinali Heris, N. Zolfagharian, S.B. Mousavi, S. Hosseini Nami, Enhancing the synergistic properties of plate heat exchangers using nanohybrid MWCNTs–SiO2 EG-based nanofluids. Journal of Thermal Analysis and Calorimetry, 150(8), (2025) 6225–6244. https://doi.org/10.1007/s10973-025-14165-0
- R. Vinoth, B. Sachuthananthan, Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels. International Communications in Heat and Mass Transfer, 123, (2021) 105194. https://doi.org/10.1016/j.icheatmasstransfer.2021.105194
- S. Kumar, A.K. Tiwari, Performance evaluation of evacuated tube solar collector using boron nitride nanofluid. Sustainable Energy Technologies and Assessments, 53, (2022) 102466. https://doi.org/10.1016/j.seta.2022.102466
- M. Farbod, Z. Rafati, Heat transfer, thermophysical and rheological behavior of highly stable few-layers of h-BN nanosheets/EG-based nanofluid. Materials Today Communications, 33, (2022) 104921. https://doi.org/10.1016/j.mtcomm.2022.104921
- Z. Duan, Z. Wang, Y. Jia, S. Wang, P. Bian, J. Tan, J. Song, X. Liu, Dispersion Stability and Tribological Properties of Cold Plasma-Modified h-BN Nanofluid. Nanomaterials, 15(11), (2025) 874. https://doi.org/10.3390/nano15110874
- A.K. Tiwari, Z. Said, N.S. Pandya, H. Shah, Effect of plate spacing and inclination angle over the thermal performance of plate heat exchanger working with novel stabilized polar solvent-based silicon carbide nanofluid. Journal of Energy Storage, 60, (2023) 106615. https://doi.org/10.1016/j.est.2023.106615
- C. Guo, Z. Wu, X. Wang, J. Zhang, Comparison in performance by emulsion and SiC nanofluids HS-WEDM multi-cutting process. The International Journal of Advanced Manufacturing Technology, 116(9), (2021) 3315-3324. https://doi.org/10.1007/s00170-021-07600-7
- A.H. Shaik, S. Chakraborty, S. Saboor, K.R. Kumar, A. Majumdar, M. Rizwan, M. Arıcı, M.R. Chandan. Cu-Graphene water-based hybrid nanofluids: synthesis, stability, thermophysical characterization, and figure of merit analysis. Journal of Thermal Analysis and Calorimetry, 149(7), (2024) 2953-2968. https://doi.org/10.1007/s10973-023-12875-x
- R. Peng, X. Chen, M. Zhou, L. Zhao, J. Gao, Process optimization via synergistic hBN/SiC nanofluid and internal cooling for low-damage grinding of Inconel 718. Ceramics International, 51(24), (2025) 43436–43450. https://doi.org/10.1016/j.ceramint.2025.07.083
- L. Du, W. Hu, An overview of heat transfer enhancement methods in microchannel heat sinks. Chemical Engineering Science, 280, (2023) 119081. https://doi.org/10.1016/j.ces.2023.119081
- S. S. Mousavi Ajarostaghi, M. Zaboli, H. Javadi, B. Badenes, J.F. Urchueguia, A Review of Recent Passive Heat Transfer Enhancement Methods. Energies, 15(3), (2022) 986. https://doi.org/10.3390/en15030986
- W. Mohd. A.A. Japar, N.A.C. Sidik, R. Saidur, Y. Asako, S. Nurul Akmal Yusof, A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges. Nanotechnology Reviews, 9(1), (2022) 1192–1216. https://doi.org/10.1515/ntrev-2020-0094
- Y. Alihosseini, M. Zabetian Targhi, M. Mahdi Heyhat, Thermo-hydraulic performance of wavy microchannel heat sink with oblique grooved finned. Applied Thermal Engineering, 189, (2021) 116719. https://doi.org/10.1016/j.applthermaleng.2021.116719
- Y.J. Lee, P.S. Lee, S.K. Chou, (2009) Enhanced Microchannel Heat Sinks Using Oblique Fins. ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability, International Electronic Packaging Technical Conference and Exhibition, California, USA. https://doi.org/10.1115/InterPACK2009-89059
- V. Kumar, J. Sarkar, Numerical Analysis on Hydrothermal Behavior of Various Ribbed Minichannel Heat Sinks with Different Hybrid Nanofluids. Arabian Journal for Science and Engineering, 47(5), 6209–6221. https://doi.org/10.1007/s13369-021-06119-z
- S. Borah, D. Bhanja, Enhancing thermo-hydraulic performance in flow boiling with hybrid nanofluids in double-layered wavy microchannel heat sink. Applied Thermal Engineering, 273, (2025)126488. https://doi.org/10.1016/j.applthermaleng.2025.126488
- S.V. Patankar, (2018) Numerical Heat Transfer and Fluid Flow, 1st ed. CRC Press. https://doi.org/10.1201/9781482234213
- G. Hetsroni, A. Mosyak, Z. Segal, G. Ziskind, A uniform temperature heat sink for cooling of electronic devices. International Journal of Heat and Mass Transfer, 45(16), (2002) 3275–3286. https://doi.org/10.1016/S0017-9310(02)00048-0
- M.M. Rashidi, M.A. Nazari, I. Mahariq, M.E.H. Assad, M.E. Ali, R. Almuzaiqer, A. Nuhait, N. Murshid, Thermophysical properties of hybrid nanofluids and the proposed models: An updated comprehensive study. Nanomaterials, 11(11), (2021) 3084. https://doi.org/10.3390/nano11113084
- Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer, 43(19), (2000) 3701–3707. https://doi.org/10.1016/S0017-9310(99)00369-5
- H.C. Brinkman, The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20(4), (1952) 571. https://doi.org/10.1063/1.1700493
- I.M. Krieger, T.J. Dougherty, A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres. Transactions of the Society of Rheology, 3(1), (1959) 137–152. https://doi.org/10.1122/1.548848
- Y. Wang, W. Zhang, M. Feng, M. Qu, Z. Cai, G. Yang, Y. Pan, C. Liu, C. Shen, X.Liu. The influence of boron nitride shape and size on thermal conductivity, rheological and passive cooling properties of polyethylene composites. Composites Part A: Applied Science and Manufacturing, 161, (2022) 107117. https://doi.org/10.1016/j.compositesa.2022.107117
- R. Mondragon, J. Enrique Julia, A. Barba, J.C. Jarque, Determination of the packing fraction of silica nanoparticles from the rheological and viscoelastic measurements of nanofluids. Chemical Engineering Science, 80, (2012) 119–127. https://doi.org/10.1016/j.ces.2012.06.009
- W.K. Zhen, Z.Z. Lin, C.L. Huang, Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation. Chinese Physics B, 26(11), (2017) 114401. https://doi.org/10.1088/1674-1056/26/11/114401
- R.L. Hamilton, O.K. Crosser Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3), (1962) 187-191. https://doi.org/10.1021/i160003a005
- J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids. Journal of Nanoparticle research, 6(6), (2004) 577-588. https://doi.org/10.1007/s11051-004-3170-5
- E.W. Lemmon, (2010) Thermophysical properties of fluid systems. NIST chemistry WebBook.
- D.R. Lide, G. Baysinger, S. Chemistry, L.I. Berger, R. N. Goldberg, and H.V. Kehiaian, (1995) CRC Handbook of Chemistry and Physics.
- M. Malý, A.S. Moita, J. Jedelsky, A.P.C. Ribeiro, A.L.N. Moreira, Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications. Journal of Thermal Analysis and Calorimetry, 135(6), (2019) 3375-3386. https://doi.org/10.1007/s10973-018-7444-z
- W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. Journal of nanomaterials, 2012(1), (2012) 435873. https://doi.org/10.1155/2012/435873
- X.Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. International journal of thermal sciences, 46(1), (2007) 1-19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
- I.U. Ibrahim, M. Sharifpur, J.P. Meyer, S.S. Murshed, Experimental investigations of effects of nanoparticle size on force convective heat transfer characteristics of Al2O3-MWCNT hybrid nanofluids in transitional flow regime. International Journal of Heat and Mass Transfer, 228, (2024)125597. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125597
- S. Mukherjee, S. Chakrabarty, P.C. Mishra, P. Chaudhuri, Stability and sedimentation characteristics of water based Al2 O3 and TiO2 nanofluids. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 238, (2024) 17–30. https://doi.org/10.1177/23977914221127735
Articles

