Abstract
This research investigates the effect of a Streptomyces-derived extract (SE) on microbiologically influenced corrosion (MIC) induced by Pseudomonas aeruginosa biofilms on API 5L X52 steel. Various amounts of SE were evaluated in P. aeruginosa cultures by 7-day immersion assays. SE was extracted from Actinobacteria strains found in a soil sample from the Béchar-Kenadsa region of the Sahara. Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze the chemical composition of the extract. This facilitated the identification of specific components that inhibit corrosion. The anticorrosion efficacy of SE against biofilm-induced corrosion under microbiological influence (CMI) of API 5L X52 steel caused by P. aeruginosa was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was employed to examine the surface morphology. The findings indicate that the incorporation of SE significantly inhibits the development of P. aeruginosa biofilms on the coupons. This inhibitory activity leads to a significant reduction in the rate of microbiologically induced corrosion, commonly attributed to bacterial colonization.. In silico investigations validated that the discovered compounds exhibit a strong affinity for the corrosive bacterium P. aeruginosa, elucidating their inhibitory function.
Keywords
Microbiologically influenced corrosion (MIC), Streptomyces extract (SE), Electrochemical impedance spectroscopy (EIS), API 5L X52, Molecular docking,Downloads
References
- K.A. Natarajan, in Biotechnology of Metals. Elsevier, (2018), 355–393. https://doi.org/10.1016/B978-0-12-804022-5.00012-8
- H.A. Videla, Microbially induced corrosion: an updated overview. International biodeterioration & biodegradation, 48(1-4), (2001) 176-201. https://doi.org/10.1016/S0964-8305(01)00081-6
- M.F. Libert, O. Bildstein, La biocorrosion: Nouvelles approches. Actual Chim. 400–401, (2015) 105. https://new.societechimiquedefrance.fr/wp-content/uploads/2019/12/2015-400-401-oct.-nov.-p105-libert-hd.pdf
- NACE International, (2025).The National Association of Corrosion Engineers (NACE). https://inspectioneering.com/tag/nace http://impact.nace.org/
- A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corrosion Reviews, 32(3-4), (2014) 129-141. https://doi.org/10.1515/corrrev-2013-0047
- D. Cai, J. Wu, K. Chai, Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria Pseudomonas sp. and Vibrio sp. ACS Omega 6(5), (2021) 3780-3790. https://doi.org/10.1021/acsomega.0c05402
- Z. Liu, T. Cui, Y. Chen, Z. Dong, Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion, Bioelectrochemistry, 152, (2023) 108412. https://doi.org/10.1016/j.bioelechem.2023.108412
- J. Morales, P. Esparza, S. González, R. Salvarezza, M.P. Arévalo, Corrosion Science. 34(9), (1993) 1531- 1540. https://doi.org/10.1016/0010-938X(93)90246-D
- R. Zhu, G. Xie, Z.A. Qin, X. Tang, J. Cai, J. Yang, Effects of dissolved oxygen accelerated P. aeruginosa on the corrosion mechanism of X70 steel in simulated marine environments. Materials Chemistry and Physics, 334, (2025) 130478 https://doi.org/10.1016/j.matchemphys.2025.130478
- M.S. Khan, T. Liang, Y. Liu, Y. Shi, H. Zhang, H. Li, S. Guo, H. Pan, K. Yang, Y. Zhao, Microbiologically Influenced Corrosion Mechanism of Ferrous Alloys in Marine Environment. Metals, 12(9), (2022) 1458. https://doi.org/10.3390/met12091458
- D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 113, (2017) 1-8. https://doi.org/10.1016/j.bioelechem.2016.08.001
- Y. Wang, R. Zhang, J. Duan, F. Guan, W. Sand, B. Hou, Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. International journal of molecular sciences, 23(10), (2022) 5566. https://doi.org/10.3390/ijms23105566
- I.B. Beech and J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15(3), (2004) 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
- X.L. Li, J. Narenkumar, A. Rajasekar, Y.P. Ting, Biocorrosion of mild steel and copper used in cooling tower water and its control. 3 Biotech 8, (2018)178. https://doi.org/10.1007/s13205-018-1196-0
- R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 127, (2017) 1-9. https://doi.org/10.1016/j.corsci.2017.08.007
- Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu and F. Wang, Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 94, 9-13. https://doi.org/10.1016/j.elecom.2018.07.019
- B. Chugh, Sheetal, M. Singh, S. Thakur, B. Pani, A.K. Singh and V.S. Saji Extracellular electron transfer by Pseudomonas aeruginosa in biocorrosion: a review. ACS biomaterials science & engineering, 8(3), (2022) 1049–1059. https://doi.org/10.1021/acsbiomaterials.1c01645
- Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review, Journal of Materials Science & Technology, 34(10), (2018) 1713-1718. https://doi.org/10.1016/j.jmst.2018.02.023
- Z. Xiao, W. Wang, W. Cui, G. Qin, Marine microbial corrosion inhibitation of an in situ formed oxide coating on Ti56Zr44 alloy. Materials Chemistry and Physics, 304, (2023) 127924. https://doi.org/10.1016/j.matchemphys.2023.127924
- A. Labena, M.A. Hegazy, R.M. Sami, W.N. Hozzein, Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules, 25(6), (2020) 1348. https://doi.org/10.3390/molecules25061348
- A.A. Jimoh, E. Booysen, L. van Zyl, M. Trindade, Do biosurfactants as anti-biofilm agents have a future in industrial water systems?. Frontiers in Bioengineering and Biotechnology, 11, (2023) 1244595. https://doi.org/10.3389/fbioe.2023.1244595
- R.A. Shamsuddin, M.H. Abu Bakar, W.R. Wan Daud, K.B. Hong, J. Mat Jahim, Can electrochemically active biofilm protect stainless steel used as electrodes in bioelectrochemical systems in a similar way as galvanic corrosion protection?. International Journal of Hydrogen Energy, 44(58), (2019) 30512-30523. https://doi.org/10.1016/j.ijhydene.2019.03.089
- H. Jafari, E. Ameri, M.H. Vakili, A. Berisha, Novel Silicon-based schiff-base as corrosion inhibitor for anti-corrosion behavior of API 5L Grade B in 1M HCl. Materials Chemistry and Physics, 311, (2024) 128499. https://doi.org/10.1016/j.matchemphys.2023.128499
- N. Wang, R. Zhang, K. Liu, Y. Zhang, X. Shi, W. Sand, B. Hou, Application of nanomaterials in antifouling: A review, Nano Materials Science, 6(6), (2024) 672-700. https://doi.org/10.1016/j.nanoms.2024.01.009
- R. Mansour, A.M. Elshafei, Role of microorganisms in corrosion induction and prevention. British Biotechnology Journal, 14(3), (2016) 1-11. https://doi.org/10.9734/BBJ/2016/27049
- M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, D. van Sinderen, Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and molecular biology reviews, 71(3), (2007) 495-548. https://doi.org/10.1128/MMBR.00005-07
- S. Sengupta, A. Pramanik, A. Ghosh, M. Bhattacharyya, Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC microbiology, 15(1), (2015)170. https://doi.org/10.1186/s12866-015-0495-4
- E.H. Driche, B. Badji, C. Bijani, S. Belghit, F. Pont, F. Mathieu, A. Zitouni, A new saharan strain of Streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria. Current microbiology, 79(10), (2022) 298. https://doi.org/10.1007/s00284-022-02994-3
- N. Goel, M. Ghosh, D. Jain, R. Sinha, S.K. Khare, Inhibition and eradication of Pseudomonas aeruginosa biofilms by secondary metabolites of Nocardiopsis lucentensis EMB25. RSC Medicinal Chemistry, 14(4), (2023) 745-756. https://doi.org/10.1039/D2MD00439A
- E.H. Driche, B. Badji, C. Bijani, S. Belghit, F. Pont, F. Mathieu, A. Zitouni, Antibacterial and antibiofilm properties of two cyclic dipeptides produced by a new desert Streptomyces sp. HG-17 strain against multidrug-resistant pathogenic bacteria. International Microbiology, 28(2), (2025) 241–255. https://doi.org/10.1007/s10123-024-00533-7
- J.P. Da Rosa, S.R.G. Tibúrcio, J.M. Marques, L. Seldin, R.R.R. Coelho, Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian Journal of Microbiology, 47(3), (2016) 603–609. https://doi.org/10.1016/j.bjm.2016.04.013
- H.A. Videla, L.K. Herrera, Microbiologically influenced corrosion: looking to the future. International microbiology, 8(3), (2005) 169.
- K. Alam, A. Mazumder, S. Sikdar, Y.M. Zhao, J. Hao, C. Song, Y. Wang, R. Sarkar, S. Islam, Y. Zhang, A. Li, Streptomyces: The biofactory of secondary metabolites. Frontiers in microbiology, 13, (2022) 968053. https://doi.org/10.3389/fmicb.2022.968053
- M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. Al-Mazroa, H.Z. Alkhathlan, Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arabian Journal of Chemistry, 7(3), (2012) 340–346. https://doi.org/10.1016/j.arabjc.2012.01.015
- D. Sivakumar, R. Ramasamy, Y. Thiagarajan, B. Thirumalairaj, U. Krishnamoorthy, M. Haque Siddiqui, N. Lakshmaiya, A. Kumar, M. Shah, Biosurfactants in biocorrosion and corrosion mitigation of metals: An overview. Open Chemistry, 22(1), (2024) 20240036. https://doi.org/10.1515/chem-2024-0036
- M. Hayakawa, H. Nonomura, Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65(5), (1987) 501-509.
- E.H. Driche, N. Sabaou, C. Bijani, A. Zitouni, F. Pont, F. Mathieu, B. Badji, Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus. World Journal of Microbiology and Biotechnology, 33, (2017) 105. https://doi.org/10.1007/s11274-017-2265-y
- QIAGEN, (2017) DNeasy PowerSoil Kit Handbook. https://www.qiagen.com/us/resources/resourcedetail?id=9bb59b74-e493-4aeb-b6c1-f660852e8d97&lang=en
- Bioline, (2023) BIOTAQ DNA Polymerase: Product Information. https://www.bioline.com/biotaq-dna-polymerase.html
- S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool. Journal of molecular biology, 215(3), (1990) 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), (2010) 455-461. https://doi.org/10.1002/jcc.21334
- C. Van Anh, J.S. Kang, J.W. Yang, J.H. Kwon, C.S. Heo, H.S. Lee, C.H. Park, H.J. Shin, Sesquiterpenes from Streptomyces qinglanensis and their cytotoxic activity. Marine Drugs, 21(6), (2023) 361. https://doi.org/10.3390/md21060361
- N. Anita, R.M. Joany, R. Dorothy, J. Aslam, S. Rajendran, A. Subramania, G. Singh, C. Verma, Chapter 4 - Linear polarization resistance (LPR) technique for corrosion measurements. Electrochemical and Analytical Techniques for Sustainable Corrosion Monitoring, Advances, Challenges and Opportunities, Elsevier, (2023) 59-80. https://doi.org/10.1016/B978-0-443-15783-7.00005-0
- L. Cockenpot, (2014) Mechanisms of Antibiotic Resistance of Pseudomonas aeruginosa in Swarming Motility and its Ecological Function, Master’s thesis, Institut Armand-Frappier, INRS, Canada. https://espace.inrs.ca/id/eprint/3306/1/Laure%20Cockenpot.pdf
- W. Wenkai, S. Zhihua, W. Jiajia, D. Zhang, P. Wang, C. Li, L. Zhu, Y. Gao, Y. Sun, The Nitrate-Dependent Impact of Carbon Source Starvation on EH40 Steel Corrosion Induced by the Coexistence of Desulfovibrio vulgaris and Pseudomonas aeruginosa. Metals, 13(12), (2023) 413. https://doi.org/10.3390/met13020413
- S. Wu, Q. Jiang, C. Liu, R. Xie, J. Duan, B. Hou, Inhibition of carbon steel corrosion caused by Pseudomonas aeruginosa biofilms using the eco-friendly ε-Polylysine antimicrobial peptide. Corrosion Science, 236, (2024) 112228. https://doi.org/10.1016/j.corsci.2024.112228
- A. Timoncini, L. Lorenzetti, R.J. Turner, A. McGibbon, C. Martini, E. Cofini, E. Bernardi, C. Chiavari, Inhibition of Pseudomonas aeruginosa biofilm formation on copper-based thin foils. Plos One, 19(12), (2024) e0314684. https://doi.org/10.1371/journal.pone.0314684
- E. Asimakopoulou, S.I. Ekonomou, P. Papakonstantinou, O. Doran, A.C. Stratakos, (2021). Inhibition of corrosion causing Pseudomonas aeruginosa using plasma-activated water. Journal of Applied Microbiology, 132(4), (2021) 2781-2794. https://doi.org/10.1111/jam.15391
- R.M. Bethea, (2018). Statistical methods for engineers and scientists. CRC Press. https://doi.org/10.1201/9780203738580
- M.B. Ives, J.L. Luo, J.R. Rodda, (2001). Passivity of metals and semiconductors: Proceedings of the Eighth International Symposium. The Electrochemical Society.
- Thermo Scientific Chemicals. (n.d.). 1,3-dioxane, 98% [Product datasheet]. Fisher Scientific. https://www.fishersci.fr/shop/products/1-3-dioxane-98-thermo-scientific/15410498
- J. Badoz Lambling, J.C. Bardin, Solvation of ions by nitromethane. Electrochimica Acta, 19(11), (1974) 725–731. https://doi.org/10.1016/0013-4686(74)80015-0
- National Institute of Standards and Technology. (n.d.). Hydrazine, 1, 2 dimethyl. NIST Chemistry WebBook, SRD 69. https://webbook.nist.gov/cgi/cbook.cgi?ID=540738
- M.H. Mohamad, R. Awang, W.M. Yunus, A review of acetol: Application and production. American Journal of Applied Sciences, 8(11), (2011) 1135–1139. https://doi.org/10.3844/ajassp.2011.1135.1139
- N. Liang, V. Neužil-Bunešová, V. Tejnecký, M. Gänzle, C. Schwab, 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri. Food Microbiology, 98, (2021) 103720. https://doi.org/10.1016/j.fm.2020.103720
- J.P. Kamerling, 1.01 - Basics Concepts and Nomenclature Recommendations in Carbohydrate Chemistry. Comprehensive glycoscience: From chemistry to systems biology, 1, (2007) 1-38. https://doi.org/10.1016/B978-044451967-2/00001-5
- P. Seboletswe, P. Awolade, P. Singh, Recent developments on the synthesis and biological activities of fused pyrimidinone derivatives. ChemMedChem, 16(13), (2021) 2050–2067. https://doi.org/10.1002/cmdc.202100083
- L.N. Mander, (1991). Naphthoic acids. In Comprehensive Organic Synthesis. Pergamon Press.
- R.S. Vardanyan, V.J. Hruby, (2006). Synthesis of essential drugs. Elsevier.
- M. Manimaran, K. Krishnan, Marine Sp. VITMK1 derived pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) and its free radical scavenging activity. The Open Bioactive Compounds Journal, 5(1), (2017) 23–30.
- A.A. Al-Askar, F.O. Alotibi, G.A. Abo-Zaid, A. Abdelkhalek, Pyrrolo[1,2- a]pyrazine1,4-dione, hexahydro-3-(2-methylpropyl), as the primary secondary metabolite of Bacillus spp., could be an effective antifungal agent against the soil-borne fungus, Sclerotium bataticola. Egyptian Journal of Chemistry, 67(13), (2024) 1009–1022.
- G.N. Rajivgandhi, G. Ramachandran, C.C. Kanisha, J.L. Li, L. Yin, N. Manoharan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, W.J. Li, Anti-biofilm compound of 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane from marine Nocardiopsis sp. DMS 2 (MH900226) against biofilm forming K. pneumoniae. Journal of King Saud University - Science, 32(8), (2020) 3495–3502. https://doi.org/10.1016/j.jksus.2020.10.012
- P.O. Samirana, Y.B. Murti, R.I. Jenie, E.P. Setyowati, GC-MS metabolomic approach to study antimicrobial activity of the marine sponge-derived fungi Trichoderma reesei TV221. Journal of Applied Pharmaceutical Science, 13(7), (2023) 159–173. https://doi.org/10.7324/JAPS.2023.124424
- M. Manimaran, J.V. Gopal, K. Kannabiran, Antibacterial activity of Streptomyces sp. VITMK1 isolated from mangrove soil of Pichavaram, Tamil Nadu, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(2), (2017) 499-506. http://dx.doi.org/10.1007/s40011-015-0619-5
- G. Rajivgandhi, G. Ramachandran, M. Maruthupandy, B. Vaseeharan, N. Manoharan, Molecular identification and structural characterization of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) and its antibacterial efficacy against isolated ESBL producing bacteria. Microbial Pathogenesis, 126, (2019) 138-148. https://doi.org/10.1016/j.micpath.2018.10.014
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), (2009) 2785-2791. https://doi.org/10.1002/jcc.21256
- C.Q. Hu, K. Li, T.T. Yao, Y.Z. Hu, H.Z. Ying, X.W. Dong, Integrating docking scores and key interaction profiles to improve the accuracy of molecular docking: Towards novel B-RafV600E inhibitors. MedChemComm, 8(9), (2017) 1835–1844. https://doi.org/10.1039/c7md00229g
Articles

