Abstract

This research investigates the effect of a Streptomyces-derived extract (SE) on microbiologically influenced corrosion (MIC) induced by Pseudomonas aeruginosa biofilms on API 5L X52 steel. Various amounts of SE were evaluated in P. aeruginosa cultures by 7-day immersion assays. SE was extracted from Actinobacteria strains found in a soil sample from the Béchar-Kenadsa region of the Sahara. Gas chromatography-mass spectrometry (GC-MS) was utilized to analyze the chemical composition of the extract. This facilitated the identification of specific components that inhibit corrosion. The anticorrosion efficacy of SE against biofilm-induced corrosion under microbiological influence (CMI) of API 5L X52 steel caused by P. aeruginosa was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was employed to examine the surface morphology. The findings indicate that the incorporation of SE significantly inhibits the development of P. aeruginosa biofilms on the coupons. This inhibitory activity leads to a significant reduction in the rate of microbiologically induced corrosion, commonly attributed to bacterial colonization.. In silico investigations validated that the discovered compounds exhibit a strong affinity for the corrosive bacterium P. aeruginosa, elucidating their inhibitory function.

Keywords

Microbiologically influenced corrosion (MIC), Streptomyces extract (SE), Electrochemical impedance spectroscopy (EIS), API 5L X52, Molecular docking,

Downloads

Download data is not yet available.

References

  1. K.A. Natarajan, in Biotechnology of Metals. Elsevier, (2018), 355–393. https://doi.org/10.1016/B978-0-12-804022-5.00012-8
  2. H.A. Videla, Microbially induced corrosion: an updated overview. International biodeterioration & biodegradation, 48(1-4), (2001) 176-201. https://doi.org/10.1016/S0964-8305(01)00081-6
  3. M.F. Libert, O. Bildstein, La biocorrosion: Nouvelles approches. Actual Chim. 400–401, (2015) 105. https://new.societechimiquedefrance.fr/wp-content/uploads/2019/12/2015-400-401-oct.-nov.-p105-libert-hd.pdf
  4. NACE International, (2025).The National Association of Corrosion Engineers (NACE). https://inspectioneering.com/tag/nace http://impact.nace.org/
  5. A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corrosion Reviews, 32(3-4), (2014) 129-141. https://doi.org/10.1515/corrrev-2013-0047
  6. D. Cai, J. Wu, K. Chai, Microbiologically Influenced Corrosion Behavior of Carbon Steel in the Presence of Marine Bacteria Pseudomonas sp. and Vibrio sp. ACS Omega 6(5), (2021) 3780-3790. https://doi.org/10.1021/acsomega.0c05402
  7. Z. Liu, T. Cui, Y. Chen, Z. Dong, Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion, Bioelectrochemistry, 152, (2023) 108412. https://doi.org/10.1016/j.bioelechem.2023.108412
  8. J. Morales, P. Esparza, S. González, R. Salvarezza, M.P. Arévalo, Corrosion Science. 34(9), (1993) 1531- 1540. https://doi.org/10.1016/0010-938X(93)90246-D
  9. R. Zhu, G. Xie, Z.A. Qin, X. Tang, J. Cai, J. Yang, Effects of dissolved oxygen accelerated P. aeruginosa on the corrosion mechanism of X70 steel in simulated marine environments. Materials Chemistry and Physics, 334, (2025) 130478 https://doi.org/10.1016/j.matchemphys.2025.130478
  10. M.S. Khan, T. Liang, Y. Liu, Y. Shi, H. Zhang, H. Li, S. Guo, H. Pan, K. Yang, Y. Zhao, Microbiologically Influenced Corrosion Mechanism of Ferrous Alloys in Marine Environment. Metals, 12(9), (2022) 1458. https://doi.org/10.3390/met12091458
  11. D. Xu, J. Xia, E. Zhou, D. Zhang, H. Li, C. Yang, Q. Li, H. Lin, X. Li, K. Yang, Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 113, (2017) 1-8. https://doi.org/10.1016/j.bioelechem.2016.08.001
  12. Y. Wang, R. Zhang, J. Duan, F. Guan, W. Sand, B. Hou, Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives. International journal of molecular sciences, 23(10), (2022) 5566. https://doi.org/10.3390/ijms23105566
  13. I.B. Beech and J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15(3), (2004) 181-186. https://doi.org/10.1016/j.copbio.2004.05.001
  14. X.L. Li, J. Narenkumar, A. Rajasekar, Y.P. Ting, Biocorrosion of mild steel and copper used in cooling tower water and its control. 3 Biotech 8, (2018)178. https://doi.org/10.1007/s13205-018-1196-0
  15. R. Jia, D. Yang, J. Xu, D. Xu, T. Gu, Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 127, (2017) 1-9. https://doi.org/10.1016/j.corsci.2017.08.007
  16. Y. Huang, E. Zhou, C. Jiang, R. Jia, S. Liu, D. Xu, T. Gu and F. Wang, Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 94, 9-13. https://doi.org/10.1016/j.elecom.2018.07.019
  17. B. Chugh, Sheetal, M. Singh, S. Thakur, B. Pani, A.K. Singh and V.S. Saji Extracellular electron transfer by Pseudomonas aeruginosa in biocorrosion: a review. ACS biomaterials science & engineering, 8(3), (2022) 1049–1059. https://doi.org/10.1021/acsbiomaterials.1c01645
  18. Y. Li, D. Xu, C. Chen, X. Li, R. Jia, D. Zhang, W. Sand, F. Wang, T. Gu, Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review, Journal of Materials Science & Technology, 34(10), (2018) 1713-1718. https://doi.org/10.1016/j.jmst.2018.02.023
  19. Z. Xiao, W. Wang, W. Cui, G. Qin, Marine microbial corrosion inhibitation of an in situ formed oxide coating on Ti56Zr44 alloy. Materials Chemistry and Physics, 304, (2023) 127924. https://doi.org/10.1016/j.matchemphys.2023.127924
  20. A. Labena, M.A. Hegazy, R.M. Sami, W.N. Hozzein, Multiple Applications of a Novel Cationic Gemini Surfactant: Anti-Microbial, Anti-Biofilm, Biocide, Salinity Corrosion Inhibitor, and Biofilm Dispersion (Part II). Molecules, 25(6), (2020) 1348. https://doi.org/10.3390/molecules25061348
  21. A.A. Jimoh, E. Booysen, L. van Zyl, M. Trindade, Do biosurfactants as anti-biofilm agents have a future in industrial water systems?. Frontiers in Bioengineering and Biotechnology, 11, (2023) 1244595. https://doi.org/10.3389/fbioe.2023.1244595
  22. R.A. Shamsuddin, M.H. Abu Bakar, W.R. Wan Daud, K.B. Hong, J. Mat Jahim, Can electrochemically active biofilm protect stainless steel used as electrodes in bioelectrochemical systems in a similar way as galvanic corrosion protection?. International Journal of Hydrogen Energy, 44(58), (2019) 30512-30523. https://doi.org/10.1016/j.ijhydene.2019.03.089
  23. H. Jafari, E. Ameri, M.H. Vakili, A. Berisha, Novel Silicon-based schiff-base as corrosion inhibitor for anti-corrosion behavior of API 5L Grade B in 1M HCl. Materials Chemistry and Physics, 311, (2024) 128499. https://doi.org/10.1016/j.matchemphys.2023.128499
  24. N. Wang, R. Zhang, K. Liu, Y. Zhang, X. Shi, W. Sand, B. Hou, Application of nanomaterials in antifouling: A review, Nano Materials Science, 6(6), (2024) 672-700. https://doi.org/10.1016/j.nanoms.2024.01.009
  25. R. Mansour, A.M. Elshafei, Role of microorganisms in corrosion induction and prevention. British Biotechnology Journal, 14(3), (2016) 1-11. https://doi.org/10.9734/BBJ/2016/27049
  26. M. Ventura, C. Canchaya, A. Tauch, G. Chandra, G.F. Fitzgerald, K.F. Chater, D. van Sinderen, Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and molecular biology reviews, 71(3), (2007) 495-548. https://doi.org/10.1128/MMBR.00005-07
  27. S. Sengupta, A. Pramanik, A. Ghosh, M. Bhattacharyya, Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC microbiology, 15(1), (2015)170. https://doi.org/10.1186/s12866-015-0495-4
  28. E.H. Driche, B. Badji, C. Bijani, S. Belghit, F. Pont, F. Mathieu, A. Zitouni, A new saharan strain of Streptomyces sp. GSB-11 produces maculosin and N-acetyltyramine active against multidrug-resistant pathogenic bacteria. Current microbiology, 79(10), (2022) 298. https://doi.org/10.1007/s00284-022-02994-3
  29. N. Goel, M. Ghosh, D. Jain, R. Sinha, S.K. Khare, Inhibition and eradication of Pseudomonas aeruginosa biofilms by secondary metabolites of Nocardiopsis lucentensis EMB25. RSC Medicinal Chemistry, 14(4), (2023) 745-756. https://doi.org/10.1039/D2MD00439A
  30. E.H. Driche, B. Badji, C. Bijani, S. Belghit, F. Pont, F. Mathieu, A. Zitouni, Antibacterial and antibiofilm properties of two cyclic dipeptides produced by a new desert Streptomyces sp. HG-17 strain against multidrug-resistant pathogenic bacteria. International Microbiology, 28(2), (2025) 241–255. https://doi.org/10.1007/s10123-024-00533-7
  31. J.P. Da Rosa, S.R.G. Tibúrcio, J.M. Marques, L. Seldin, R.R.R. Coelho, Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Brazilian Journal of Microbiology, 47(3), (2016) 603–609. https://doi.org/10.1016/j.bjm.2016.04.013
  32. H.A. Videla, L.K. Herrera, Microbiologically influenced corrosion: looking to the future. International microbiology, 8(3), (2005) 169.
  33. K. Alam, A. Mazumder, S. Sikdar, Y.M. Zhao, J. Hao, C. Song, Y. Wang, R. Sarkar, S. Islam, Y. Zhang, A. Li, Streptomyces: The biofactory of secondary metabolites. Frontiers in microbiology, 13, (2022) 968053. https://doi.org/10.3389/fmicb.2022.968053
  34. M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. Al-Mazroa, H.Z. Alkhathlan, Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arabian Journal of Chemistry, 7(3), (2012) 340–346. https://doi.org/10.1016/j.arabjc.2012.01.015
  35. D. Sivakumar, R. Ramasamy, Y. Thiagarajan, B. Thirumalairaj, U. Krishnamoorthy, M. Haque Siddiqui, N. Lakshmaiya, A. Kumar, M. Shah, Biosurfactants in biocorrosion and corrosion mitigation of metals: An overview. Open Chemistry, 22(1), (2024) 20240036. https://doi.org/10.1515/chem-2024-0036
  36. M. Hayakawa, H. Nonomura, Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65(5), (1987) 501-509.
  37. E.H. Driche, N. Sabaou, C. Bijani, A. Zitouni, F. Pont, F. Mathieu, B. Badji, Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus. World Journal of Microbiology and Biotechnology, 33, (2017) 105. https://doi.org/10.1007/s11274-017-2265-y
  38. QIAGEN, (2017) DNeasy PowerSoil Kit Handbook. https://www.qiagen.com/us/resources/resourcedetail?id=9bb59b74-e493-4aeb-b6c1-f660852e8d97&lang=en
  39. Bioline, (2023) BIOTAQ DNA Polymerase: Product Information. https://www.bioline.com/biotaq-dna-polymerase.html
  40. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool. Journal of molecular biology, 215(3), (1990) 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  41. O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), (2010) 455-461. https://doi.org/10.1002/jcc.21334
  42. C. Van Anh, J.S. Kang, J.W. Yang, J.H. Kwon, C.S. Heo, H.S. Lee, C.H. Park, H.J. Shin, Sesquiterpenes from Streptomyces qinglanensis and their cytotoxic activity. Marine Drugs, 21(6), (2023) 361. https://doi.org/10.3390/md21060361
  43. N. Anita, R.M. Joany, R. Dorothy, J. Aslam, S. Rajendran, A. Subramania, G. Singh, C. Verma, Chapter 4 - Linear polarization resistance (LPR) technique for corrosion measurements. Electrochemical and Analytical Techniques for Sustainable Corrosion Monitoring, Advances, Challenges and Opportunities, Elsevier, (2023) 59-80. https://doi.org/10.1016/B978-0-443-15783-7.00005-0
  44. L. Cockenpot, (2014) Mechanisms of Antibiotic Resistance of Pseudomonas aeruginosa in Swarming Motility and its Ecological Function, Master’s thesis, Institut Armand-Frappier, INRS, Canada. https://espace.inrs.ca/id/eprint/3306/1/Laure%20Cockenpot.pdf
  45. W. Wenkai, S. Zhihua, W. Jiajia, D. Zhang, P. Wang, C. Li, L. Zhu, Y. Gao, Y. Sun, The Nitrate-Dependent Impact of Carbon Source Starvation on EH40 Steel Corrosion Induced by the Coexistence of Desulfovibrio vulgaris and Pseudomonas aeruginosa. Metals, 13(12), (2023) 413. https://doi.org/10.3390/met13020413
  46. S. Wu, Q. Jiang, C. Liu, R. Xie, J. Duan, B. Hou, Inhibition of carbon steel corrosion caused by Pseudomonas aeruginosa biofilms using the eco-friendly ε-Polylysine antimicrobial peptide. Corrosion Science, 236, (2024) 112228. https://doi.org/10.1016/j.corsci.2024.112228
  47. A. Timoncini, L. Lorenzetti, R.J. Turner, A. McGibbon, C. Martini, E. Cofini, E. Bernardi, C. Chiavari, Inhibition of Pseudomonas aeruginosa biofilm formation on copper-based thin foils. Plos One, 19(12), (2024) e0314684. https://doi.org/10.1371/journal.pone.0314684
  48. E. Asimakopoulou, S.I. Ekonomou, P. Papakonstantinou, O. Doran, A.C. Stratakos, (2021). Inhibition of corrosion causing Pseudomonas aeruginosa using plasma-activated water. Journal of Applied Microbiology, 132(4), (2021) 2781-2794. https://doi.org/10.1111/jam.15391
  49. R.M. Bethea, (2018). Statistical methods for engineers and scientists. CRC Press. https://doi.org/10.1201/9780203738580
  50. M.B. Ives, J.L. Luo, J.R. Rodda, (2001). Passivity of metals and semiconductors: Proceedings of the Eighth International Symposium. The Electrochemical Society.
  51. Thermo Scientific Chemicals. (n.d.). 1,3-dioxane, 98% [Product datasheet]. Fisher Scientific. https://www.fishersci.fr/shop/products/1-3-dioxane-98-thermo-scientific/15410498
  52. J. Badoz Lambling, J.C. Bardin, Solvation of ions by nitromethane. Electrochimica Acta, 19(11), (1974) 725–731. https://doi.org/10.1016/0013-4686(74)80015-0
  53. National Institute of Standards and Technology. (n.d.). Hydrazine, 1, 2 dimethyl. NIST Chemistry WebBook, SRD 69. https://webbook.nist.gov/cgi/cbook.cgi?ID=540738
  54. M.H. Mohamad, R. Awang, W.M. Yunus, A review of acetol: Application and production. American Journal of Applied Sciences, 8(11), (2011) 1135–1139. https://doi.org/10.3844/ajassp.2011.1135.1139
  55. N. Liang, V. Neužil-Bunešová, V. Tejnecký, M. Gänzle, C. Schwab, 3-Hydroxypropionic acid contributes to the antibacterial activity of glycerol metabolism by the food microbe Limosilactobacillus reuteri. Food Microbiology, 98, (2021) 103720. https://doi.org/10.1016/j.fm.2020.103720
  56. J.P. Kamerling, 1.01 - Basics Concepts and Nomenclature Recommendations in Carbohydrate Chemistry. Comprehensive glycoscience: From chemistry to systems biology, 1, (2007) 1-38. https://doi.org/10.1016/B978-044451967-2/00001-5
  57. P. Seboletswe, P. Awolade, P. Singh, Recent developments on the synthesis and biological activities of fused pyrimidinone derivatives. ChemMedChem, 16(13), (2021) 2050–2067. https://doi.org/10.1002/cmdc.202100083
  58. L.N. Mander, (1991). Naphthoic acids. In Comprehensive Organic Synthesis. Pergamon Press.
  59. R.S. Vardanyan, V.J. Hruby, (2006). Synthesis of essential drugs. Elsevier.
  60. M. Manimaran, K. Krishnan, Marine Sp. VITMK1 derived pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) and its free radical scavenging activity. The Open Bioactive Compounds Journal, 5(1), (2017) 23–30.
  61. A.A. Al-Askar, F.O. Alotibi, G.A. Abo-Zaid, A. Abdelkhalek, Pyrrolo[1,2- a]pyrazine1,4-dione, hexahydro-3-(2-methylpropyl), as the primary secondary metabolite of Bacillus spp., could be an effective antifungal agent against the soil-borne fungus, Sclerotium bataticola. Egyptian Journal of Chemistry, 67(13), (2024) 1009–1022.
  62. G.N. Rajivgandhi, G. Ramachandran, C.C. Kanisha, J.L. Li, L. Yin, N. Manoharan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, W.J. Li, Anti-biofilm compound of 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane from marine Nocardiopsis sp. DMS 2 (MH900226) against biofilm forming K. pneumoniae. Journal of King Saud University - Science, 32(8), (2020) 3495–3502. https://doi.org/10.1016/j.jksus.2020.10.012
  63. P.O. Samirana, Y.B. Murti, R.I. Jenie, E.P. Setyowati, GC-MS metabolomic approach to study antimicrobial activity of the marine sponge-derived fungi Trichoderma reesei TV221. Journal of Applied Pharmaceutical Science, 13(7), (2023) 159–173. https://doi.org/10.7324/JAPS.2023.124424
  64. M. Manimaran, J.V. Gopal, K. Kannabiran, Antibacterial activity of Streptomyces sp. VITMK1 isolated from mangrove soil of Pichavaram, Tamil Nadu, India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(2), (2017) 499-506. http://dx.doi.org/10.1007/s40011-015-0619-5
  65. G. Rajivgandhi, G. Ramachandran, M. Maruthupandy, B. Vaseeharan, N. Manoharan, Molecular identification and structural characterization of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) and its antibacterial efficacy against isolated ESBL producing bacteria. Microbial Pathogenesis, 126, (2019) 138-148. https://doi.org/10.1016/j.micpath.2018.10.014
  66. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), (2009) 2785-2791. https://doi.org/10.1002/jcc.21256
  67. C.Q. Hu, K. Li, T.T. Yao, Y.Z. Hu, H.Z. Ying, X.W. Dong, Integrating docking scores and key interaction profiles to improve the accuracy of molecular docking: Towards novel B-RafV600E inhibitors. MedChemComm, 8(9), (2017) 1835–1844. https://doi.org/10.1039/c7md00229g