Abstract

Emotional and stress responses are essential for interpreting cognition and mental health in therapy. Traditional models insufficiently seize the complicated temporal-spatial correlations in EEG data, resulting in imprecise assessments of patients' emotional states. This research presents a Novel Attention-Tuned deep learning (DL) model for recognizing emotions and stress by real-time EEG signals gathered during Cognitive Therapy Sessions, intending to improve recognition accuracy and the interpretability of neural activity connected to psychological states. 2000 EEG data were collected, which undergoes preprocessing employing adaptive median filtering to eliminate noise and artifacts. Discrete Wavelet Transform (DWT) using features is extracted to both temporal and spectral characteristics of the brain’s activity patterns. The See-See Partidge Chicks-driven Attention-Tuned Convolutional Neural Network (SSPC-Att-CNN) model is used to recognize human emotions and stress levels by examining EEG data. This architecture integrates convolutional layers for spatial feature learning with an attention mechanism that adaptively concentrates on the most informative EEG regions corresponding to emotional arousal and stress variations. A SSPC Optimization (SSPCO) algorithm is employed for feature selection, enhancing computational efficacy and robustness. Experimental evaluation was conducted on python 3.10 for standard EEG datasets which demonstrates that the proposed AT-CNN significantly outperforms conventional DL models in recognizing emotional valence in accuracy of 82.10 %, arousal in the accuracy of 97.89%, and stress intensity levels. The system provides real-time cognitive monitoring, giving therapist’s objective insights into emotional regulation and stress patterns. This improves Artificial Intelligence (AI)-assisted psychological assessment tools and promotes a data-driven understanding of emotions in therapy.

Keywords

EEG, Attention-Tuned CNN, Emotion Recognition, Stress Detection, Cognitive Therapy, Feature Selection, Brain Dynamics,

Downloads

Download data is not yet available.

References

  1. H.G. Kim, D.K. Jeong, J.Y. Kim, Emotional stress recognition using electroencephalogram signals based on a three-dimensional convolutional gated self-attention deep neural network. Applied Sciences, 12(21), (2022). 11162. https://doi.org/10.3390/app122111162
  2. V.M. Joshi, R.B. Ghongade, EEG based emotion detection using fourth order spectral moment and deep learning. Biomedical Signal Processing and Control, 68, (2021) 102755. https://doi.org/10.1016/j.bspc.2021.102755
  3. Q. Wang, M. Wang, Y. Yang, X. Zhang, Multi-modal emotion recognition using EEG and speech signals. Computers in Biology and Medicine, 149, (2022) 105907. https://doi.org/10.1016/j.compbiomed.2022.105907
  4. Z. Wang, Y. Wang, C. Hu, Z. Yin, Y. Song, Transformers for EEG-based emotion recognition: A hierarchical spatial information learning model. IEEE Sensors Journal, 22(5), (2022) 4359-4368. https://doi.org/10.1109/JSEN.2022.3144317
  5. F. Hu, K. He, C. Wang, Q. Zheng, B. Zhou, G. Li, Y. Sun, STRFLNet: Spatio-Temporal Representation Fusion Learning Network for EEG-Based Emotion Recognition. IEEE Transactions on Affective Computing. (2025) 1 – 16. https://doi.org/10.1109/TAFFC.2025.3611173
  6. J.V.M.R. Fernandes, A.R.D. Alexandria, J.A.L. Marques, D.F.D. Assis, P.C. Motta, B.R.D.S. Silva, Emotion detection from EEG signals using machine deep learning models. Bioengineering, 11(8), (2024) 782. https://doi.org/10.3390/bioengineering11080782
  7. J.J. Gonzalez-Vazquez, L. Bernat, J.L. Ramon, V. Morell, A. Ubeda, A deep learning approach to estimate multi-level mental stress from EEG using serious games. IEEE Journal of Biomedical and Health Informatics, 28(7), (2024) 3965-3972. https://doi.org/10.1109/JBHI.2024.3395548
  8. T. Dhara, P.K. Singh, M. Mahmud, A fuzzy ensemble-based deep learning model for EEG-based emotion recognition. Cognitive Computation, 16(3), (2024) 1364-1378. https://doi.org/10.1007/s12559-023-10171-2
  9. X. Wang, Y. Ren, Z. Luo, W. He, J. Hong, Y. Huang, Deep learning-based EEG emotion recognition: Current trends and future perspectives. Frontiers in psychology, 14, (2023) 1126994. https://doi.org/10.3389/fpsyg.2023.1126994
  10. C. Huang, Recognition of psychological emotion by EEG features. Network Modeling Analysis in Health Informatics and Bioinformatics, 10(1), (2021) 12. https://doi.org/10.1007/s13721-020-00283-2
  11. O. Almanza-Conejo, D.L. Almanza-Ojeda, J.L. Contreras-Hernandez, M.A. Ibarra-Manzano, Emotion recognition in EEG signals using the continuous wavelet transform and CNNs. Neural Computing and Applications, 35(2), (2023) 1409-1422. https://doi.org/10.1007/s00521-022-07843-9
  12. Z. Tang, X. Li, D. Xia, Y. Hu, L. Zhang, J. Ding, An art therapy evaluation method based on emotion recognition using EEG deep temporal features. Multimedia Tools and Applications, 81(5), (2022) 7085-7101. https://doi.org/10.1007/s11042-022-12002-2
  13. H.R. Banjar, L. Alsefri, A. Alshomrani, M. Hamdhy, S. Alahmari, S. Sharaf, Activating the Mobile User Interface With a Rule‐Based Chatbot and EEG‐Based Emotion Recognition to Aid in Coping With Negative Emotions. Human Behavior and Emerging Technologies, 2024(1), (2024) 7499554. https://doi.org/10.1155/2024/7499554
  14. L. Malviya, S. Mal, A novel technique for stress detection from EEG signal using hybrid deep learning model. Neural Computing and Applications, 34(22), (2022) 19819-19830. https://doi.org/10.1007/s00521-022-07540-7
  15. S. Wang, J. Qu, Y. Zhang, Y. Zhang, Multimodal emotion recognition from EEG signals and facial expressions. IEEE Access, 11, (2023) 33061-33068. https://doi.org/10.1109/ACCESS.2023.3263670
  16. R. Fu, Y.F. Chen, Y. Huang, S. Chen, F. Duan, J. Li, J. Wu, D. Jiang, J. Gao, J. Gu, M. Zhang, Symmetric convolutional and adversarial neural network enables improved mental stress classification from EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, (2022) 1384-1400. https://doi.org/10.1109/TNSRE.2022.3174821
  17. B. Chakravarthi, S.C. Ng, M.R. Ezilarasan, M.F. Leung, EEG-based emotion recognition using hybrid CNN and LSTM classification. Frontiers in computational neuroscience, 16, (2022) 1019776. https://doi.org/10.3389/fncom.2022.1019776
  18. S.A.M. Mane, A. Shinde, StressNet: Hybrid model of LSTM and CNN for stress detection from electroencephalogram signal (EEG). Results in Control and Optimization, 11, (2023) 100231. https://doi.org/10.1016/j.rico.2023.100231
  19. B. Roy, L. Malviya, R. Kumar, S. Mal, A. Kumar, T. Bhowmik, J.W. Hu, Hybrid deep learning approach for stress detection using decomposed EEG signals. Diagnostics, 13(11), (2023) 1936. https://doi.org/10.3390/diagnostics13111936
  20. Y. Yin, X. Zheng, B. Hu, Y. Zhang, X. Cui, EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Applied Soft Computing, 100, (2021) 106954. https://doi.org/10.1016/j.asoc.2020.106954
  21. L. Malviya, S. Mal, CIS feature selection based dynamic ensemble selection model for human stress detection from EEG signals. Cluster Computing, 26(4), (2023) 2367-2381. https://doi.org/10.1007/s10586-023-04008-8
  22. S.K. GS, N. Sampathila, T. Tanmay, Wavelet based machine learning models for classification of human emotions using EEG signal. Measurement: Sensors, 24, (2022) 100554. https://doi.org/10.1016/j.measen.2022.100554
  23. X. Gu, W. Cai, M. Gao, Y. Jiang, X. Ning, P. Qian, Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition. IEEE Transactions on Computational Social Systems, 9(6), (2022) 1604-1612. https://doi.org/10.1109/TCSS.2022.3153660
  24. O. AlShorman, M. Masadeh, M.B.B. Heyat, F. Akhtar, H. Almahasneh, G.M. Ashraf, A. Alexiou, Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. Journal of integrative neuroscience, 21(1), (2022) 20. https://doi.org/10.31083/j.jin2101020
  25. S.V. Thiruselvam, M.R. Reddy, Frontal EEG correlation based human emotion identification and classification. Physical and Engineering Sciences in Medicine, 48(1), (2025) 121-132. https://doi.org/10.1007/s13246-024-01495-w
  26. A. Hag, D. Handayani, T. Pillai, T. Mantoro, M.H. Kit, F. Al-Shargie, EEG mental stress assessment using hybrid multi-domain feature sets of functional connectivity network and time-frequency features. Sensors, 21(18), (2021) 6300. https://doi.org/10.3390/s21186300
  27. K.P. Wagh, K. Vasanth, Performance evaluation of multi-channel electroencephalogram signal (EEG) based time frequency analysis for human emotion recognition. Biomedical Signal Processing and Control, 78, (2022) 103966. https://doi.org/10.1016/j.bspc.2022.103966
  28. A. Geetha, S.S. Bharathi, A.R. Bernard, R.Y. Teja, K. Pradeep, Emotional recognition system using EEG and psycho physiological signals. In Ambient Communications and Computer Systems: Proceedings of RACCCS 2021, 356 (2022) 327-335. https://doi.org/10.1007/978-981-16-7952-0_30
  29. M. Algarni, F. Saeed, T. Al-Hadhrami, F. Ghabban, M. Al-Sarem, Deep learning-based approach for emotion recognition using electroencephalography (EEG) signals using bi-directional long short-term memory (Bi-LSTM). Sensors, 22(8), (2022) 2976. https://doi.org/10.3390/s22082976
  30. H. Chao, Y. Liu, Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework. IEEE Access, 8, (2020) 33002-33012. https://doi.org/10.1109/ACCESS.2020.2974009
  31. Y. Zhang, J. Chen, J.H. Tan, Y. Chen, Y. Chen, D. Li, L. Yang, J. Su, X. Huang, W. Che, An investigation of deep learning models for EEG-based emotion recognition. Frontiers in Neuroscience, 14, (2020) 622759. https://doi.org/10.3389/fnins.2020.622759
  32. H.M. Afify, K.K. Mohammed, A.E. Hassanien, Stress detection based EEG under varying cognitive tasks using convolution neural network. Neural Computing and Applications, 37(7), (2025) 5381-5395. https://doi.org/10.1007/s00521-024-10737-7
  33. E. Gkintoni, A. Aroutzidis, H. Antonopoulou, C. Halkiopoulos, From neural networks to emotional networks: A systematic review of EEG-based emotion recognition in cognitive neuroscience and real-world applications. Brain Sciences, 15(3), (2025) 220. https://doi.org/10.3390/brainsci15030220
  34. S. Khan, S.H. Noorani, J. Frnda, U. Rauf, A. Arsalan, S.M.U. Saeed, A Transfer Learning-based Framework for Enhanced Classification of Perceived Mental Stress using EEG Spectrograms. IEEE Access, 13, (2025) 89266 – 89286. https://doi.org/10.1109/ACCESS.2025.3571437
  35. T.M. Zakaria, A.Z. Langi, N.M. Sophian, I. Anshori, Artificial Intelligence (AI) in Neurofeedback Therapy Using Electroencephalography (EEG), Heart Rate Variability (HRV), Galvanic Skin Response (GSR). IEEE Access, 13, (2025) 133078 – 133112. https://doi.org/10.1109/ACCESS.2025.3582805
  36. F. Postepski, G.M. Wojcik, K. Wrobel, A. Kawiak, K. Zemla, G. Sedek, Recurrent and convolutional neural networks in classification of EEG signal for guided imagery and mental workload detection. Scientific Reports, 15(1), (2025) 10521. https://doi.org/10.1038/s41598-025-92378-x
  37. L. Zhu, J. Yim, Multimodal emotion recognition-driven personalized digital therapeutics for anxiety management. Future Technology, 5(1), (2026) 65-71.
  38. L.K. Kulanthaivel Lakshmanan, K. Leelasankar, B. Subbiyan, Stress Detection Using Machine Learning and Deep Learning Techniques: A Systematic Review and Meta-Analysis. Archives of Computational Methods in Engineering, (2025) 1-33. https://doi.org/10.1007/s11831-025-10429-y
  39. İ. Kayadibi, O. Uslu, A lightweight St-CNN architecture based on deep learning for stress level detection from human physical activities. Scientific Reports, 15(1), (2025) 33570. https://doi.org/10.1038/s41598-025-18647-x
  40. C. Rieck, P. Penava, R. Buettner, A Systematic Literature Review of Machine Learning-based Personality Trait Detection using Electroencephalographic Data. IEEE Access, 13, (2025) 114812 – 114833. https://doi.org/10.1109/ACCESS.2025.3586005